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INTRODUCTION

The suboptimization method of interval linear programming, recently
developed by the authors, is the basis of the algorithm proposed here for the
solution of the discrete linear L 1 approximation problem, stated in Section 1.
Interval programming is introduced in Section 2. The algorithm is presented
in Section 3 and its advantages over previous linear programming approaches
are discussed in Section 4. Two worked examples are included.

1. THE DISCRETE LINEAR L 1 ApPROXIMATION PROBLEM

This problem is stated as:

minimize

subject to

(1)

Fx+ €= t,

where the matrix F = (/;) and the vector t = (tl) are given; the vectors € = (€I)
and x = (Xj) are to be found (i = 1, ..., n;j = 1, ..., m).

Such problems arise, for instance, if a given data {(SI, tl): i = 1, ..., n} is to be
approximated, in the sense of the L 1 norm, by a linear combination of given
functions {gl ):j= 1, ..., m}. The prob1emis then:

minimize (2)
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subject to
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m
2: g/Si) Xj + Ei = ti
j=l

(i=l, ...,n),

which is (1) with};j = g/Si)'
The dual problem (see, e.g., [6J, [7]) of the linear program (1) is:

maximize

subject to

(3)

where eT = (1, 1, ... , 1).
The problem (1), and the analogously defined discrete linear Leo approxima­

tion problem, were solved by linear programming techniques (see, e.g., [1]-[3],
[12]-[14], and the survey [9]). If m is large, then (1) can be solved via its dual
(3), see, e.g., [14J, [9J. Likewise, in this paper, (1) is solved via (3), which is
solved by the suboptimization method of interval programming, [10J, [11).
Possible advantages of this approach are discussed in Section 4.

2. INTERVAL LINEAR PROGRAMMING

This name, abbreviated IP, is the term coined in [10J to denote the theory,
computations and applications of extremization problems (called interval
programs or IP's) ofthe form

maximize

subject to

(4)

where the matrix A, and the vectors b-, b+, c are given. IP is an alternative
formulation of linear programming, see, e.g., [5J, offering explicit solutions in
some special cases, see, e.g., [4J, (15J, and efficient iterative methods in the
general case [10J, [llJ. A simplified version of the suboptimization method of
[J1] is used here to solve (3), which is an IP with

The simplification is possible because the IP (3) is feasible, bounded and its
coefficient matrix A is of full column rank, thus eliminating the corresponding
steps in [11).
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3. THE SUBOPTIMIZATION ALGORITHM

This finite iterative method for solving

maximize

subject to

325

(3)

solves at the vth iteration, v;> 1, an auxiliary problem, denoted (AP. v):

maximize t T y (4)

subject to
(5.v)

(6.v)

where (5.v)isa setofn constraints from (3), chosen sothatA(V) is non-singular,
and (6.v) is a single constraint of (3).

(AP. v), v;> 1, is thus a subproblem of (3), accounting for the title of this
section.

The vth iteration, v;> 1.

Denote by:

y(V-1)-the optimal solution of (4), (5.v)

y(V) -the optimal solution of (4), (5.v), (6.v).

For v = 1, let

b(1)- = -e, (7)

and let (6.1) be any constraint from the remaining constraints

O~ FTy~O

of(3). Theny(O) = (y~O»), i = 1, ... , n,
the solution of

maximize

subject to

(4)

(5.1)
is clearly:

y~O) = f ~I
l-1

where ~1 < 01 < 1 is arbitrary.

(

>0
if t l =0

<0
(8)
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_ {ah(V) y(V-1) _ bh(v)+
Ll - ah(V) y(V-l) _ bh(V)-

For v:> 1 we assume thaty(V-1) and (A(V))-l are known.
Ify(V-l) satisfies (6.v) then

y(V) = y(V-1)

Otherwise y(V) is obtained from y(V-1) as follows: Let

if positive
if negative

be the amount by which (6.v) is violated at y(V-I), and let

Q = {i: 1 <; i <; n, (ah(V)(A(V))-l)i =l= 0, Yi :> O}
where

(9.v)

(lO.v)

(l1.v)

(l2.v)

Remark. Q is the index set of the components of (A(V)y(V-O) which can be
changed in order to move (6.v) towards feasibility, while maintaining feasibility
in (S.v). Yi is the marginal cost of such a change in (A(V)y(V-l))i, i E Q.

Now let the (say q) indices in Q be ordered by

(l3.v)
where

(14.v)

and
(lS.v)

(l6.v)

Remark. (IS.v) is a "tie breaking rule" which, like the Charnes' perturbation
in the simplex algorithm, prevents cycling, see, e.g., [6].

Then y(V) is given by:

[

P-I ]
y(V) = y(V-1) + (A(V))-l ~l 8k;ek; + Bekp

where ek is the kth unit vector,

if sign LI = sign (ah(V)(A(V))-l)k'
ifsignLl =-sign(ah(V)(A(V))-l)k' (17.v)

for k E Q,

p= min {i: 1 <; i<; q,1 Jl 8kiah(V)(A(V))-1)kJ! :> ILl 1} , (IS.v)
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Remark. The 8kgiven by (17.v) is the maximal change of (A (v)iV-I))kmoving
(6.v) towards feasibility, without violating (5.v). Thus y(V\ given by (16.v), is
obtained fromy(V-I) by makingp such changes. The existence ofp, defined by
(18. v), is guaranteed by the feasibility of (3). Indeed, if

IJI 8kiah(V)(A(V»)-1)kJ! < ILl/,

then the constraints (5.v), (6.v) are inconsistent. Finally, (14.v) guarantees that
cheaper changes come first. Therefore (16.v) is an optimal solution of (AP. v).

Ify(V), obtained by (9.v) or (16.v), satisfies all the constraints of (3) (one has to
check only the constraints not in (5.v), (6.v))theny(V) is clearly also an optimal
solution of (3).

Otherwise, (AP. v + 1) is obtained from (AP. v) as follows: The kpth
constraint (the index k p is determined by(18.v)and (13.v)) of (5.v) is deleted and
replaced by the constraint (6.v). For the additional constraint (6.v + 1) take
any constraint of (3) violated by y(V).

The (v + l)st iteration then solves (AP. v + 1), etc.
This completes the description of the suboptimization method for solving

the IP (3).
The following facts concerning the suboptimization algorithm are proved

in [11]:

(i) This algorithm terminates after a finite number, say f, of iterations.
y(f), the optimal solution of (AP.!) computed in thefth iteration (by
either (9.1) or (16.1) is an optimal solution of (3).

(ii) The matrix A(v+1), obtained from the nonsingular matrix A(v) by
replacing its kpth row with ah(V), is likewise nonsingular. (Since
A<O) = 1= (A(O»-l, this suggests computing (A(v»)-l, v> 1, by the
"product form of the inverse", see, e.g., [7].)

(iii) This algorithm is a dual method [8] with one or more basic changes
per iteration (p basic changes at the vth iteration, where p is given by
(I8.v).

Finally, the optimal solutionyU) of (3) is used to obtain an optimal
solution €*=(€t*), x*=(x/) (i=l, ... ,n;j=l, ... ,m) of (1) as
follows: Let A(!+l) be the matrix obtained from A(f) by replacing its
kpth row (see (18.f) and (13.f)) with ahU). Then

and

ifrowj ofpT is notin A (/+1)

ifrowj ofpT is the ithrow ofAU+l)

€* = t -Px*.

(20.j)

(21)
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Indeed, (e*,x*) is a feasible solution of (1), by the definition (21). The
optimality of (e*, x*) follows from the duality theorem of linear programming
(see, e.g., [7]) by verifying the fact:

(22)

Example 1. Find X1,X2, ... ,Xmsuch that the polynomial

t=XI +X2S+",+xmsm-l

is the best L 1 approximation of n given data points:

{(sl,tl):i= 1, ... ,n}.
That is:

minimize (23)

subject to

i=l, ... ,n.

For example, let m = 2, n = 4, with

i= 1 2 3 4
SI = 0 1 2 3
t l =.5 1 2 1.

Solution. (23) is a special case of (2). Its dual problem, given by (3), is:

maximize

subject to

(24)

YI< 1

(j= 1, ,m)

(i= 1, ,n).

With the above data, (24) becomes:

maximize 1-Yl +Y2 + 2Y3 +Y4
subject to

(25)

0< YI +Y2 + Y3 + Y4 < 0
0< Y2 + 2Y3 + 3Y4 < 0

-1<YI <1
-1 < Y2 < 1
-1 < Y3 < 1
-1< Y4<1.

The solution of (25) by the suboptimization algorithm proceeds as follows.
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Iteration 1. The first auxiliary problem is, by (7) and by choosing (6.1) as
the 1st constraint of (25),

(AP.I).

maximize (4)

subject to

(

-I<Y1
-1 < Yz
-1 < Y3
-1<

(5.1)

0< Y1 + Y2 + Y3 + Y4 < O.

The solution yeo) of (4), (5.1) is, by (8):

y(O)T = (1, 1, 1, 1).
It violates (6.1) by

Ll = 4 - 0 = 4, see (10.1).

Using (11.1)-(15.1), we get

Q = {k b kz,k3,k4} = {I, 2,4, 3},
since

Furthermore,

(6.1)

so that, by (16.1),

81 = 82 = 84 = 83 =-2

p=2

8= -4+2 =-2
1

by (17.1)

by (18.1)

by (19.1),

y''J ~ (;) +(-2) (~) + (-2)m~ (=;)
is an optimal solution of (AP.I).

Since y(1) violates the 2nd constraint of (25), it is necessary to perform

Iteration 2. The 2nd auxiliary problem is
CAP. 2).

maXImIze -!Y1 + Y2 + 2Y3 + Y4 (4)
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subject to

{

-I';;;Y,
o.;;; Y, +Y2 + Y3 +

-1.;;; Y3
-1.;;;

.;;;1
Y4';;;0

.;;;1
Y4';;; 1

(5.2)

0.;;; Y2+2Y3+3Y4';;;0, (6.2)

obtained from (AP.l) by replacing the 2nd constraint (since k p = 2 in iteration
1) by(6.1), and by adjoining as (6.2) the 2nd constraint of (25) which is violated
by y(1).

Using:
y(1)T = (-1,-1, 1, 1)

(

1 0 0

A(2) = 1 1 1
001
000

ah(2) = (0, 1,2,3),

we compute:

bh(2)- = 0, bh(2)+ = 0,

LI =4
t T(A(2))-' = (--t, 1, 1,0)

ah(2)(A(2))-' = (-1, 1, 1,2)

Q= {k,.k2,k3,k4} = {4, 1,2,3}
()4 = -2, (), = 0, ()2 = 0, ()3 =-2
p=1
() = -2,

and, by (16.2),

(-1) (1 0
(2) = -1 + -1 1

Y 100
1 0 0

o 0)(0) (-1)-1 -1 0 1
~ ~ ~ (-2) = _~ ,

which satisfies all the constraints of (25), and is therefore an optimal solution
of (25). To find the optimal (X,*,X2*)' we form

(

1 0
A(3) = 1 1

o 0
o 1

o 0)1 1
1 0
2 3
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and calculate:

(
1 0 0 0)
1. 1. 1 1

(A(3»)-l = -~ _~ =r -~/.
2 2 2 2

By (20.2), (21),
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X2* =0

eH = (-1-,0,1,0).

The reader can verify that (22) is satisfied, and that

t = I

is the line which best approximates the above data in the L, sense.

4. DISCUSSION

The algorithm described in Section 3 has two possible advantages over other
linear programming solutions ofthe discrete linear L j approximation problem.

The first is computational efficiency. Results of some numerical tests,
performed by the authors for a more general algorithm, are described in [10]
and [11]. Our experience is typified by a sample problem ([3]) of finding Xj,XZ

so that ti = Xj + X2Si, i = 1, ... ,6, is the best L, approximation of the data:

i= I

Si= 0

2 3

2

4

3

5

4

6

5

t i = 1.520 1.025 0.475 0.010 -0.475 -1.005.

It required, for this example, five iterations or 0.190 sec to solve problem (1)
by the simplex algorithm on the CDC6400 at Northwestern University, but
only two iterations or 0.128 sec to solve problem (3) by the suboptimization
method. A definitive computational evaluation of the technique discussed
above would require extensive numerical testing of (i) the simplex method
applied to problem (1), (ii) the bounded variables simple:x:method [7] applied
to problem (3), and the suboptimization algorithm applied to problem (3).

To illustrate the second advantage claimed here for the suboptimization
algorithm, consider the linear L j approximation problem (23) and suppose
that an optimal solution y(f) of the dual problem (24) has been found. The
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optimal solution (E* ,x*) of (23), computed from y(f) by (20.!) and (21),
involves an approximation error IIE*III, given by (22) as:

n

IIE*III = L IEi*1 =tTy(f).
i~1

(22)

The approximation error can thus be determined by y(f) alone, without
computing (E*,X*). If IIE*III is too large, then it can be decreased by increasing
the degree of the approximating polynomial. This means that instead of (23)
we solve:

minimize

subject to

m+k
" j-I + tL., XjSi Ei = 1

j=1

where k is some positive integer.
The dual of (23') is:

maximize

subject to

n

O "j-I 0< L., SI YI <
i~1

(i= 1, ... ,n),

(j= 1, ... ,m+k)

(i=I, ...,n).

(23')

(24')

Problem (24') is problem (24) with k additional constraints:

n

O "j-I 0< L., Si Yi <
1=1

(j=m+ l, ... ,m+k). (26)

If the solution y(f) of (24) satisfies (26), then if) is also a solution of (24'),
and the approximation error (22) is unchanged. In this case the integer k in
(23') and (24') is further increased, until (26) is violated by y(f).

Any constraint in (26), violated byy(f), can be used as the additional constraint
(6.f+ 1) to form the auxiliary problem (AP.f+ 1). An iteration, the (f+ l)st,
of the suboptimization algorithm is then performed, using y(f) as a starting
point, and resulting iny(f+l). This is repeated, say, I iterations, until a solution
y(f+l) of (24') is found. The approximation error tTy(f+l) corresponding to
y(f+l) is less than that of y(f). If t Ty(f+l) is small enough, then the optimal
solution (E*',X*') of (23') is computed from y(f+l), using (20.f + 1) and (21).

Thus the suboptimization algorithm enables one, for example,
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(i) To increase the degree of approximation (the integer m in (1), (2) or
(23» without completely resolving the problem; the present solution
y(f) is used as a starting point.

(ii) For the given data {(Si' Ii): i = 1, .. o,n}, functions {gl )} and the given
bound 0> 0, to determine a "polynomial"

m

2: gls)xj
j=l

of minimal "degree" m, which satisfies

n m

2: IIi - 2: gj(si)Xjl < o.
i~l j~l

This advantage, shared by all dual methods [8] for solving (1), is realized
only if the data {(Si, Ii): i = 1, . .. ,n} is fixed. If the number n of data points is
increased during the computations, then similar advantages are enjoyed by
primal linear programming methods for solving (1), see, e.g., [3].

Example 2. Find a polynomial
m
2: xjSj

-
1

jd

of minimal m, satisfying

(27)

for the data {(ti,Si);i= 1, ...,4} of example 1.

Solution. The optimal solution (€*,x*) of example 1, with m = 2, involves
the approximation error:

4 I 2 . I2: ti - 2: x/ st-1 1= 11€*1i1 = t T
y(2)

i=11 J=l i

= (t, 1,2, 1) (-], 1, 1, -1Y = t
>1.

Therefore m > 2.
Next, try m = 3, i.e., approximate the given data by:

I=Xl +X2S+X3S2.

This results in the dual problem:

maXImIze (25')
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o<Yl +Y2 + Y3 + Y4 < 0
0< Y2 + 2Y3 + 3Y4 < 0
o< Y2 + 4Y3 + 9y4 < 0

-1 <Yl < 1
-1 < Y2 < 1
-1 < Y3 < 1
-1< Y4<1,

which is (25) with the additional constraint

o<Y2 + 4Y3 + 9Y4 < O. (26')

Since (26') is violated by y(2)T = (-1,1,1,-1), we use it as the additional con­
straint (6.3) of the auxiliary problem in

Iteration 3.
(AP.3).

maximize

subject to

{

-I <Yl < 1
0< Yl +Y2 + Y3 + Y4 <°

-1 < Y3 < 1
0< Y2+2Y3+3Y4<0

0< Y2+4Y3+9Y4<0.

(AP. 3) is obtained in the usual way from (AP.2) of example 1.
Using:

y(2)T = (-1, 1, 1,-1)

Am~ (~ ~ r~). (AO'-' ~UlJ
ah(3) = (0, 1,4,9), bh(3)- = 0, bhO )+ =0

we compute:
Ll =-4

tT(AO»)-l = (-4, 1, 1,0)
ah(3)(AO»)-1 = (3, -3, -1,4)

Q = {k 1, k 2 , k 3 , k4} = {4, 1,2, 3}
04 = 0,0 1 = 2,02 = 0, 03 =-2
p=2
o=±3

~)
"2

(4)

(5.3)

(6.3)
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and by (16.3)

y(3) = (-:) + (1 i 1 ~) (~) (1) = (-!).
-1 t --!- --!- ! 0 -t

The approximation error corresponding to y(3) is

tT y(3) = H, 1,2, 1)(t,-1, 1,--!Y = i
<1.

Therefore the minimal m satisfying (27) is 3.
To compute the optimal (E*,X*), we form

(

0 1 4 9\

A(4) = 1111)
o 0 1 0

° 123

by replacing row 1 of A(3) (since p = 2, kp = 1 in iteration 3) with ah(3). Now

and by (20.3)

Xl* = t(=(t T (A(4»)-1)2

X2* = i-
X3* = -i.

since row 1 ofpT = row 2 ofA(4»)

An approximating polynomial of minimal degree, with approximation
error ~ 1, is therefore:

which for the above data gives

E*T = (0, 0, i, 0).
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